

INTRODUCTION

The n-BMS is developed to meet all relevant automotive requirements. Featuring functionally safe design with key components such as Processor, ASIC and PSU carefully selected to meet functional safety at ASIL C level.

The "100809" monitoring unit (CMU) is compatible with both the n-BMS and the fully ISO 26262 certified n3-BMS, providing a convenient upgrade path for n-BMS users to an ISO 26262 certified system.

The n-BMS can be configured with up to 32 CMU's. Each CMU can monitor up to 12 cells in series and thus the n-BMS can monitor in total up to 384 cells in series.

The n-BMS can measure temperature with an accuracy up to ± 1 °C and SOC accuracy to within $\pm 0,5\%$.

The n-BMS uses the Creator[™] software, which enables the battery designer to create a unique, application specific battery characteristics and safety strategies, while ensuring optimal peformance, charge time, and overall battery life.

SAFETY

ISO 26262 rated key components

ISO 26262 certification capable monitoring unit (CMU)

Self-test and redundancy in safety critical measurement circuits Open circuit detection

BATTERY LIFE

High frequency sampling of current (100 mS) allows optimal detection of pulses

Powerful and intelligent dissipative balancing at 200mA per cell -40° to +85°C operational range

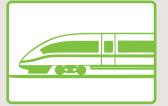
PERFORMANCE

±1,6 mV at 25°C at individual cell level

- Optimized low power consumption mode
- ±1°C accuracy in temperature measurement
- Advanced SOC algorithm with OCV compensation

Advanced SOH, SOP algorithm

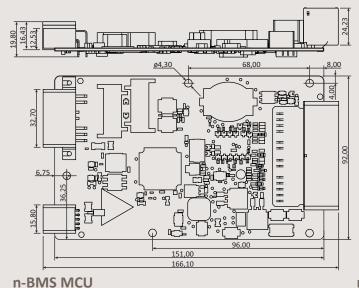
USABILITY

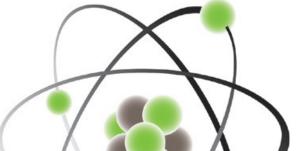

RTC + logging of events, errors and warnings BMS Creator PC tool for easy configuration

Optional current sensing (Hall effect or Shunt)

CAN UDS tool

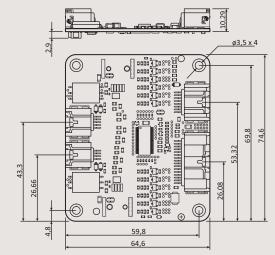
Applications




LiBAL n-BMS™

Next Generation Battery Management System

PARAMETERS


Master Control Unit (MCU)
Power supply
Number of CMU's supported
Number of cells in series for total system
Range of high voltage measurement
Accuracy of high voltage measurement
Range of current measurement input Shunt
Accuracy of current measurement input Shunt
Range of current measurement input (Hall effect sensor)
Accuracy of current measurement input (Hall effect sensor)
Accuracy of temperature (NTC)
Ground fault detection (leakage) levels
Standby Consumption
Active Consumption
Communication interface, master-slave
Supported CAN communication type
Supported CAN speeds
Number of CAN ports
External GPIOs
Charger control interfaces
Cell Monitoring Unit (CMU)
Number of cells per unit
Detectable cell voltage
Number of temperature sensors per unit
Cell balancing topology
Cell balancing current
Cell voltage typical sampling time
Accuracy of single cell voltage
Range of Temperature measurements
Accuracy of cell temperature (NTC)
Communication interface
Standby Consumption
Active Consumption
Patents

LITHIUM BALANCE

Dimensions in mm

n-BMS CMU 100809

SPECIFICATIONS

6-35 V 1-32 384 0 - 1000 VDC ±1 VDC ±150 mV ±1.0 mV -40 – 85 °C 0.0 – 5.0 V, 0.0 -2.5 V current in, 2.5 V – 5.0 V current out ±1.5 mV -40 – 85 °C ±1 °C -40 – 85 °C 250/500/1000 Ω /V Between GND and HV+/-<8,5 mW at 12V supply <3,5 W at 12 V supply isoSPI CAN 2.0A/B 11 bit and 29 bit IDs 125, 250, 500, 1k kbit/sec 2, one isolated CAN, one non-isolated CAN. 16 (Active Low) CAN 4 - 12 Cells (minimum 12 V, to power the CMU) 0 - 5 VDC

0 - 5 VDC 4 (NTC based) Dissipative 200 mA, at cell voltage 4.2 V 100 ms $\pm 1,6$ mV at 25 °C -40 to +85 °C ± 2 °C -40 - 0 °C | ± 1 °C 0 - 40 °C | ± 2 °C 40 - 85 °C isoSPI (Max. 5 m shielded cable between boards) ~460 μ W (12 μ A) - with 12 cells @ 3,2 V ~690 mW (18 mA) - with 12 cells @ 3,2 V ZT 200780048774, EP 0781788.6, US 8.350.529

LITHIUM BALANCE

+45 5851 5104

www.lithiumbalance.com

lb_contact@sensata.com

Tel:

LiTHIUM BALANCE A/S Hassellunden 13 2765 Smørum, Denmark